Assembly line termination in cylindrocyclophane biosynthesis: discovery of an editing type II thioesterase domain in a type I polyketide synthase.

نویسندگان

  • H Nakamura
  • J X Wang
  • E P Balskus
چکیده

The termination step is an important source of structural diversity in polyketide biosynthesis. Most type I polyketide synthase (PKS) assembly lines are terminated by a thioesterase (TE) domain located at the C-terminus of the final module, while other PKS assembly lines lack a terminal TE domain and are instead terminated by a separate enzyme in trans. In cylindrocyclophane biosynthesis, the type I modular PKS assembly line is terminated by a freestanding type III PKS (CylI). Unexpectedly, the final module of the type I PKS (CylH) also possesses a C-terminal TE domain. Unlike typical type I PKSs, the CylH TE domain does not influence assembly line termination by CylI in vitro. Instead, this domain phylogenetically resembles a type II TE and possesses activity consistent with an editing function. This finding may shed light on the evolution of unusual PKS termination logic. In addition, the presence of related type II TE domains in many cryptic type I PKS and nonribosomal peptide synthetase (NRPS) assembly lines has implications for pathway annotation, product prediction, and engineering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cylindrocyclophane biosynthesis involves functionalization of an unactivated carbon center.

The cylindrocyclophanes are a family of natural products that share a remarkable paracyclophane carbon scaffold. Using genome sequencing and bioinformatic analyses, we have discovered a biosynthetic gene cluster involved in the assembly of cylindrocyclophane F. Through a combination of in vitro enzyme characterization and feeding studies, we confirm the connection between this gene cluster and ...

متن کامل

Type II thioesterase from Streptomyces coelicolor A3(2).

Type I polyketide synthases (PKSs) are complexes of large, multimodular enzymes that catalyse biosynthesis of polyketide compounds via repetitive reaction sequences, during which each step is catalysed by a separate enzymic domain. Many type I PKSs, and also non-ribosomal peptide synthetase clusters, contain additional thioesterase genes located adjacent to PKS genes. These are discrete protein...

متن کامل

Type II thioesterase ScoT is required for coelimycin production by the modular polyketide synthase Cpk of Streptomyces coelicolor A3(2).

Type II thioesterases were shown to maintain efficiency of modular type I polyketide synthases and nonribosomal peptide synthetases by removing acyl residues blocking extension modules. We found that thioesterase ScoT from Streptomyces coelicolor A3(2) is required for the production of the yellow-pigmented coelimycin by the modular polyketide synthase Cpk. No production of coelimycin was observ...

متن کامل

Type II thioesterase restores activity of a NRPS module stalled with an aminoacyl-S-enzyme that cannot be elongated.

Nonribosomal peptide synthetases (NRPSs) carry out the biosynthesis of numerous peptide natural products, including many with important clinical applications. The NRPS, organized into a series of modules, is an efficient, high-fidelity assembly line for the production of a particular peptide. Each module consists of domains, whose activities contribute to the accuracy of these assembly-line sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical science

دوره 6 7  شماره 

صفحات  -

تاریخ انتشار 2015